AURA "Beyond JWST" Committee #### **Committee Members:** - Steve Battel (Battel) - Niel Brandt (Penn State) - Charlie Conroy (UC Santa Cruz) - Lee Feinberg (GSFC) - Suvi Gezari (U. Maryland) - Olivier Guyon (Subaru Obs.) - Walt Harris (LPL) - Chris Hirata (OSU) - John Mather (GSFC) - Marc Postman (STScI) - Dave Redding (JPL) - Phil Stahl (MFSC) - Jason Tumlinson (STScl) - David Schiminovich (Columbia U.) ### **Co-Chairs** - Julianne Dalcanton (U. Washington) - Sara Seager (MIT) **NASA Observer:** Paul Hertz **ESA Observer:** Arvind Parmar AURA Facilitator: Heidi Hammel # AURA "Beyond JWST" Committee ### Charter: The "Beyond JWST" committee will study future space-based options for UV and optical astronomy (UVOIR) that significantly advance our understanding of the origin and evolution of the cosmos and the life within it. The committee, which has been commissioned by AURA, has the objective of developing a plan for UVOIR missions and programs in the post-Webb era. # Developing a Shared Vision ### **Cosmic Birth** In the UVOIR, the goals and requirements are very similar. ### **Living Earth** # Developing a Shared Vision ### **Cosmic Birth** ## Broad instrument suite Sensitivity down to ~1000 Angstroms ### **Both** - Large (> 9m) aperture - Diffraction limited at ~500 nm - UV, Optical & NIR - Coronagraph or starshade - Superb mirror stability ### We Lack a Comprehensive Theory of Star and Galaxy Formation A >8 m UV-Optical space telescope can perform novel studies of gas, stars, and galaxies with a combination of angular resolution and sensitivities not replicated by HST, JWST, or large ground-based telescopes. z = 2 Galaxy: Look-back time = 76% age of universe HST (2.4m) Simulated galaxies by HydroART Team: Primack, Ceverino, Klypin, Dekel Simulated images by Greg Snyder (STScI) ### Breaking Resolution & Sensitivity Barriers in the UVOIR # Spatial Resolution Resolving 100 pc star forming regions *everywhere* in the universe would be a remarkable capability. And 1 pc resolved out to 10-25 Mpc. ALMA: molecular gas on ~0.1-0.5 scales JWST: Heavily enshrouded stars ATLAST: Emerging stars # Direct detection of the Main Sequence Turn-Off in galaxies up to 10 Mpc away enables us to trace the *Star Formation History in all major types of galaxies.* CMD image: J. Anderson Flux scale: K. Olsen et al. 2009 Most of the matter in the Universe is located in intergalactic space. We need to understand the interplay between the Intergalactic and Circumgalactic Medium and star formation The key questions are: **HOW IS INTERGALACTIC MATTER ASSEMBLED INTO GALAXIES?** TO WHAT DEGREE DOES GALAXY FEEDBACK REGULATE AND ENRICH THE IGM? WHERE AND WHEN DO THESE PROCESSES OCCUR AS A FUNCTION OF TIME? Understanding the answers to these questions lies at the heart of understanding galactic evolution. # UV Sensitivity: High Density of Background Sources # of QSO's per square degree is a strong function of magnitude ### Galaxy Evolution Studies in High-Definition Map of Galaxies within 12 Mpc of Our Galaxy At m_{FUV} = 22 AB, ~10 QSO's behind every galaxy within ~10 Mpc! Gain of ~5000 in QSO surface density vs. HST Measure circumgalactic gas in *the same galaxies* where we measure the star formation histories from resolved stars! "The most important experiment in modern biology is the search for extra-terrestrial life." > - E. O. Wilson Evolutionary Biologist June 2012 # The signature of life is likely to be encoded in the spectra of a planet's atmosphere. Based on the DRM simulation code from C. Stark et al. 2014. Assumes 10% of solar type stars have Earth-like planets in their habitable zone. Estimated number of Earth-like planets around long-lived stars for which spectra can be obtained as a function of the space telescope's primary mirror diameter. $$N_{Earth} \sim 25 (D / 10m)^{1.8} (t / 1 yr)^{0.4}$$ The number of exo-Earth spectra obtained with a given aperture can be increased by extending the total mission time allocated to exoplanet observations # Reaching 100 Exo-Earths is tough - Based on Chris Stark's yield simulations to date, to reach ~85 Exo-Earths we need - D=10m, eta_Earth=0.6 (!), solar zodi, throughput 15%, or - D=12m, eta_Earth = 0.35, solar zodi, throughput 15% - D=20m (!), eta_Earth = 0.2, 3 x solar zodi, throughput 10% - This is assuming 1 year of total exposure time spread over the lifetime of the mission - Even with a 12m aperture we are relying on pretty optimistic assumptions to get to the desired yield. - Work on planet yield and telescope aperture is ongoining to establish the minimum diameter aperture - Note on Probe vs. BJWST 8-meter space telescope: ~7 days 16-meter space telescope: *a few hours* # Planet spin rate and ocean/land fraction affect global climate Faster the spin, the less heat transport to high latitudes. Hotter equator, colder poles. Ocean is a heat sink. Greater ocean fraction, less atmospheric temperature variation. Showman et al. (2013) ## Detecting Diurnal Photometric Variability in Exoplanets Ford et al. 2003: Model of broadband photometric temporal variability of Earth Require S/N ~ 20 (5% photometry) to detect ~20% temporal variations in reflectivity. Reconstruction of Earth's land-sea ratio from disk-averaged time-resolved imaging with the EPOXI mission. A 10m class space telescope will have the power to make such maps for many exoplanets. # Parallels: Exoplanet Observations Become General Astrophysics Observations Parallel deep fields (during long ~100 ksec exoplanet exposures) with a 10 m class space telescope will reach AB ~31 mag (in BVRI). # What Aperture? - Matching Observatory Capabilities to Science Goals - Aperture, resolution, wavelength - Serviceability, on-orbit assembly, launch vehicles - Considerations for the Path Forward (i.e., tech development, policy, partnerships, etc) - Breaking the cost curve: science within a budget - Lessons learned from HST, JWST, AFTA, SIM(?) - What are critical technologies & requirements? - How do we develop these technologies? - Recommendations # What Aperture? - Aperture diameter D requirement will be based on... - ExoEarth yield using internal coronagraph or starshade - Requires D \geq 8m to meet goal of 99% probability of finding and characterizing >10 exoEarths, under current estimates of η_{Earth} and exo zodi n - Resolving stellar populations in neighboring galaxies - Requires D ≥ 8m, to reach 10Mpc - UV spectroscopic probes of gas around stars in neighboring galaxies, and of the IGM around more distant galaxies - Also requires D ≥ 8m ### Monolith or segmented? - Largest monolithic aperture flyable with existing LVs is 4m - Future LVs the SLS Block 2 may be able to launch a 6.4 or 8m monolith, but are not yet under active development - Segmented apertures support a range of size options - Up to 10m-class in existing LVs - Up to 16m-class in SLS-2 - Can be assembled on orbit to even larger sizes, if NASA invests in assembly infrastructure # Monolith or Segmented? | Candidate Aperture | | • | Launch | | Relative
Mass Areal | | Task Januar | |------------------------------|-------|-----|--|-----------|------------------------|------------|--| | Architecture | Reqts | 8m? | Options | Heritage | Density | Complexity | Tech Issues | | | | | Atlas V 551; | | | | Mirror scale-up;
Thermal stability; | | | | | Falcon 9H; | | | | coronagraph | | 4m aperture monolith | No | No | SLS Block 1 | HST | High | Low | performance | | 8m aperture monolith | Yes | | SLS Block 2
with 10m
shroud only | HST | High | Low | Mirror scale-up; Thermal stability; coronagraph performance | | | | | Delta IV H; | | | | Thermal stability; | | | | | Falcon 9H; | | | | coronagraph | | 10m-class segmented aperture | Yes | Yes | SLS Block 1 | JWST | Low | High | performance | | 16m-class segmented aperture | Yes | | SLS Block 2
with 8.4 or
10m shroud | JWST | Low | High | Mirror scale-up;
Thermal stability;
coronagraph
performance | | | | | | | | | On-orbit assembly; | | | | | Various; | | | | thermal stability; | | >8m segmented aperture, | | | requires new | | | | coronagraph | | assembled on orbit | Yes | Yes | infrastructure | JWST, ISS | Low | High | performance | #### ATLAST 10m-class segmented aperture is a strong candidate - Is scalable to larger sizes. > 12 m is likely needed to meets current science requirements - Can be launched using existing LVs - Multiple mirror segment technologies exist at needed size, though thermal stability needs investigation - Architecture and mechanisms draw on current JWST experience #### An 8m monolith will be an option if NASA develops a 10m shroud for the SLS Block 2 - Mirror scale-up from 2.4m to 8m is required; thermal stability needs investigation - Heavy = high estimated cost ### Towards Technology Recommendations **Development of internal coronagraph designs** capable of 10-10 contrast at an inner working angle of 2-3 λ/D , with an obscured, segmented aperture, suitable for operation with a 10m-class telescope; and concurrent **development of large starshade designs** suitable for operation with a 10-meter-class telescope. Investment in these two areas would build on progress already being made by the AFTA and Probe study teams, extending it to the larger apertures needed for ExoEarth discovery and characterization. Investment in segmented mirrors, to prove mirror system performance, stability and cost for 10m-class apertures in support of UV/optical science. In particular we urge that NASA conduct detailed model-based analysis of mirror system performance, especially addressing dynamic and thermal stability, to the levels required for coronagraphy; we stress that these studies must be grounded by test data. Relevant mirror systems have been built by NASA and other agencies in the past, and small additional investment would complete them for such testing purposes. This work would complement the SAT-funded AMTD project—which is developing and testing large monolithic mirror technologies—by sharing resources and facilities to provide comparable data. Advancement in UV-Visible-NIR detector and mirror coating technologies, to realize the high spatial resolution enabled by a large telescope and to maximize the scientific return of its instruments. Detectors with large formats, small pixels, and/or photon-counting capability are highly desired. Development efforts should also demonstrate performance stability and long lifetimes in flight or mission-equivalent environments. Technologies that boost observatory efficiency in the UV are also a high priority. We urge NASA to encourage and support the broad community in achieving (and testing to) these benchmarks, and to continue a balanced program to nurture low-TRL emerging/breakthrough detector and supporting technologies directed at these capabilities. Our full report will provide quantitative performance goals. # This science is aligned with NASA's 2013 Astrophysics Roadmap Large UVOIR Surveyor (8 – 16m) identified as key mission for 2 of 3 major science areas - Are We Alone? - How Did We Get Here? # How do we get there? ### U.S. Activities: - ATLAST NASA Center (GSFC/JPL/MSFC) Study - AURA "Beyond JWST" Committee - NASA "EXOPAG" & "COPAG" working groups - Coronagraph & Starshade developments for WFIRST and Exoplanet Probe concepts Goal: Mature technology and mission concepts in preparation for 2020 Decadal ## Schedule - Committee is aiming to have its report ready for public dissemination before the end of the year. - Will plan to have a special session at January 2015 AAS meeting (Seattle) to present the findings. - Leadership to advocate for the report's findings beyond 2014 will be an important item for the committee to consider.